中教数据库 > 测绘科学技术学报 > 文章详情

基于深度学习构建的全球电离层NmF2模型

更新时间:2023-05-28

【摘要】采用递归神经网络对空基COSMIC和地基垂测站数据建立了全球电离层峰值电子密度模型,模型均方根误差达到1.3×10~5 el/cm~3。在春夏秋冬4个季节内,人工神经网络ANN模型预测精度比IRI模型分别提高了25.7%、19.7%、33.3%和21.8%。另外,ANN模型不仅能够有效地模拟全球电离层时空变化特征,也能够成功地模拟电离层的诸多区域物理变化特性,如赤道电离异常、威德尔海异常、中纬度夜间异常和冬季异常。ANN模型可以为改正单频接收机的电离层延迟发挥一定的作用。

【关键词】

420 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号